Maintenance & Troubleshooting

The information in this chapter will enable you to:

- Maintain the system's components to ensure smooth, efficient operation
- Isolate and resolve system hardware and software problems
- Quick-reference for system warning & fault codes

Motor Maintenance

The motor should be inspected regularly to ensure that no bolts or couplings have worked loose during normal operation. This could prevent minor problems from developing into major problems.

The motor is brushless and the bearings are sealed. **No maintenance, other than regular visual inspection, is necessary.**

Drive Maintenance

The Z Drive requires very little maintenance, but the NEMA cabinet should be regularly inspected to make sure that the air filters are kept clean. The Z Drive requires good air flow for proper cooling.

Troubleshooting

If your system malfunctions, you must identify and isolate the problem. The first step is to isolate each system component and ensure that each component functions properly when it is run independently. If you have additional units available, you may want to use them to replace existing components in your system to help identify the source of the problem.

Determine if the problem is mechanical, electrical, or software-related. Can you repeat or re-create the problem? Do not make quick rationalizations about problems. Random events may appear to be related, but they are not necessarily contributing factors to your problem. You must carefully investigate and decipher the events that occurred before the subsequent system problem.

You may be experiencing more than one problem. You must solve one problem at a time. Log (document) all testing and problem isolation procedures. You may need to review and consult these notes later. This will also prevent you from duplicating your testing efforts.

Once you isolate the problem, take the necessary steps to resolve it. Refer to the problem solutions contained in this chapter. If your system's problem persists, contact Compumotor's Applications Engineering Department (800-358-9070).
Diagnostic LEDs

The Z Drive has three diagnostic LEDs on its front panel. Figure 8-1 shows the location of the LEDs.

POWER
Indicates that the drive is powered-up (normally green).

CPU READY
Indicates that the processor is properly functioning (normally green).

FAULT
Indicates a drive fault or error (red when a fault exists; normally off).

In addition to these LED indicators, the Z Drive has a front panel display that scrolls fault messages when a fault occurs. Chapter 4 Application Design describes all operations and capabilities of the front panel display.

Drive Warning

The following warning code will be displayed on the alphanumeric display before an overvoltage fault occurs.

<table>
<thead>
<tr>
<th>Code</th>
<th>Warning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>OVER VOLTAGE</td>
<td>The internal bus voltage has passed the warning threshold. This warning will not fault the drive; the error threshold (Error 04) will fault the drive. The warning message will remain present until an ON command or a system reset is executed.</td>
</tr>
</tbody>
</table>

Z Drive Warning Code
Drive Faults

The following Fault Codes and messages will be displayed on the alphanumeric display when the respective faults occur. The Report Servo Errors (RSE) command also reports faults and warnings.

All of the possible faults are described below, along with some troubleshooting information. Except where noted, the drive can be re-enabled after a fault has occurred by correcting the fault (if applicable) and typing a ON command.

<table>
<thead>
<tr>
<th>Code</th>
<th>Fault</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>OVER VOLTAGE</td>
<td>The internal bus voltage has exceeded its limit. Verify the input power voltage. This error may also be caused by rapid decelerations. You may need to use the Shunt Regulator option to dissipate the stored mechanical energy as heat. This error overrides the over voltage warning.</td>
</tr>
<tr>
<td>17</td>
<td>INDEXER SHUTDOWN</td>
<td>The Remote Power Shutdown input on the indexer connector has been activated, causing the drive to shutdown. Removing this input will re-enable the drive.</td>
</tr>
<tr>
<td>18</td>
<td>LOW VOLTAGE</td>
<td>The input power to the drive is either not present, or at a lower voltage than 92V. Verify the input power voltage and make sure that the power is correctly connected.</td>
</tr>
<tr>
<td>19</td>
<td>OVER-CURRENT (SHORT CIRCUIT)</td>
<td>A short circuit between motor phases, or between any phase and ground will cause the drive to fault. This may be due to improper motor wiring to the drive or due to a bad motor. In some cases an extremely high acceleration may cause this error. Power down the complete Z Drive, correct the wiring, and power-up the system. This fault cannot be removed by typing the ON command.</td>
</tr>
<tr>
<td>20</td>
<td>POSITION ERROR EXCEEDED</td>
<td>The user defined position error limit has been exceeded. The CPE (Configure Position Error) command can alter the error limit. The factory default is one revolution (5,000 motor steps). A position error may be caused by a rapid acceleration rate or possibly bad servo tuning. The user must decide whether to increase the position error limit or to change his motion profile so that the drive no longer faults out.</td>
</tr>
<tr>
<td>21</td>
<td>ROLLING AVERAGE CURRENT FAULT</td>
<td>The user specified average current limit has been exceeded. The CCA (Configure Current Average) command alters the average current limit. If the drive continues to fault out, you may have to reduce the acceleration rate of your move. The average current of the drive is calculated over a rolling 4-second time period.</td>
</tr>
<tr>
<td>22</td>
<td>AVERAGE CURRENT LIMIT EXCEEDED</td>
<td>The drive’s average current limit has been exceed. A hardware detect circuit has turned the drive off due to too much current.</td>
</tr>
<tr>
<td>23</td>
<td>DRIVE ENABLE INPUT NOT ACTIVE</td>
<td>The drive enable input on the screw terminal connector I/O[1] has been deactivated. For drive operation, a normally closed switch or wire jumper is necessary from ENABLE+ to ENABLE-input. The Z Drive is shipped with a jumper installed.</td>
</tr>
<tr>
<td>27</td>
<td>VELOCITY ERROR EXCEEDED</td>
<td>The user-defined velocity error limit has been exceeded. The CVE (Configure Velocity Error) command can alter the error limit. A velocity error may be caused by a rapid acceleration rate or bad servo tuning.</td>
</tr>
<tr>
<td>30</td>
<td>Z RAM FAILURE</td>
<td>This error should occur only during factory initialization of the Z Drive.</td>
</tr>
<tr>
<td>55</td>
<td>POWER SUPPLY FAILURE</td>
<td>This error indicates that the isolated power supply for the Z Drive’s amplifier has failed. Call Compumotor (800-358-9070).</td>
</tr>
<tr>
<td>60</td>
<td>COMMANDED SHUTDOWN</td>
<td>The Z Drive has been commanded off by the OFF command.</td>
</tr>
<tr>
<td>61</td>
<td>INCOMING INDEXER PULSES</td>
<td>When the Z Drive is reset or commanded ON, no step pulses are accepted when the amplifier is first enabled (this would constitute infinite acceleration). Make sure that the indexer connected to the Z Drive is not sending out any pulses before commanding the drive ON.</td>
</tr>
<tr>
<td>62</td>
<td>CURRENT INTEGRATION FAULT</td>
<td>Currently this fault is not enabled.</td>
</tr>
<tr>
<td>70</td>
<td>RESOLVER DISCONNECTED</td>
<td>The resolver feedback signal from the motor to the drive is missing. This feedback is required to operate the drive. Make sure the resolver connection is secure.</td>
</tr>
<tr>
<td>77</td>
<td>RESOLVER RESOLUTION FAULT</td>
<td>For a given resolver resolution there is a maximum velocity at which the resolver-digital converter can operate. If the drive faults due to this error, the maximum velocity commanded to the drive exceeds the capabilities of the resolver-digital converter. See the CRX command.</td>
</tr>
<tr>
<td>91</td>
<td>HEATSINK OVER TEMPERATURE</td>
<td>The internal heatsink of the Z Drive has reached its temperature limit. Make sure the ambient temperature for the drive is within specifications.</td>
</tr>
<tr>
<td>92</td>
<td>MOTOR OVER TEMPERATURE</td>
<td>The motor has reached its temperature limit. Make sure the ambient temperature for the motor is within specifications. Also make sure the drive is configured correctly for the motor you are using. See the CMTR command.</td>
</tr>
<tr>
<td>93</td>
<td>PCB OVER TEMPERATURE</td>
<td>The Printed Circuit Board temperature limit has been reached. Make sure the ambient temperature for the drive is within specifications.</td>
</tr>
</tbody>
</table>

Drive Fault Codes
RS-232C Problems

Use the following procedure to resolve Z Drive communication problems.

1. Be sure the host computer’s transmit (Tx) wire is wired to the peripheral’s receive (Rx) connection, and the host computer’s receive (Rx) wire is wired to the peripheral’s transmit (Tx) connection. Switch the receive and transmit wires on either the host or peripheral if the problem persists.

2. Confirm that the host and peripheral are configured for the same baud rate, 8 data bits, 1 stop bit, and no parity.

3. If you receive double characters, for instance typing A and receiving AA, the computer is set for half duplex mode. Change the setup to Full Duplex mode.

4. Use DC common or signal ground as a reference, not earth ground.

5. Cable lengths should not exceed 50 ft. unless you are using some form of line driver, optical coupler, or shield. As with any control signal, be sure to shield the cable-to-earth ground at one end only.

6. To test the terminal or terminal emulation software and the RS-232C cable for proper three-wire communication, unhook the Z Drive and enter a character. You should not receive an echoed character. If you do, you are in half duplex mode. Connect the host’s transmit and receive lines together and send another character. You should receive the echoed character. If not, consult the manufacturer of the host’s serial interface for proper pin outs.

Returning The System

If your Z Drive system is faulty, you must return the drive and motor for replacement or repair. A failed drive can damage motors, and a faulty motor can damage subsequent drives. If you must return your Z Drive to effect repairs or upgrades, use the following steps:

Step 1

Get the serial number and the model number of the defective unit(s), and a purchase order number to cover repair costs in the event the unit is determined by Parker Compumotor to be out of warranty.

Step 2

Before you ship the drive to Parker Compumotor, have someone from your organization with a technical understanding of the Z Drive and its application include answers to the following questions:

- What is the extent of the failure/reason for return?
- How long did it operate?
- How many units are still working?
- How many units failed?
- What was happening when the unit failed (i.e., installing the unit, cycling power, starting other equipment, etc.)?
- How was the product configured (in detail)?
- What, if any, cables were modified and how?
- With what equipment is the unit interfaced?
- What was the application?
- What was the system sizing (speed, acceleration, duty cycle, inertia, torque, friction, etc.)?
- What was the system environment (temperature, enclosure, spacing, unit orientation, contaminants, etc.)?
- What upgrades, if any, are required (hardware, software, user guide)?

Step 3

Call Parker Compumotor [(800) 358-9070] for a Return Material Authorization (RMA) number. Returned products cannot be accepted without an RMA number.

Step 4

Ship the unit to: Parker Compumotor Corporation
5500 Business Park Drive
Suite D
Rohnert Park, CA 94928
Attn: RMA # xxxxxx
Alphabetical Command List

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDB</td>
<td>Analog Voltage Deadband</td>
</tr>
<tr>
<td>ANV</td>
<td>Analog Voltage Range</td>
</tr>
<tr>
<td>ANZ</td>
<td>Analog Voltage Zero</td>
</tr>
<tr>
<td>CCA</td>
<td>Configure Current Average</td>
</tr>
<tr>
<td>CCP</td>
<td>Configure Current Peak</td>
</tr>
<tr>
<td>CDB</td>
<td>Configure Deadband</td>
</tr>
<tr>
<td>CIP</td>
<td>Configure In-Position</td>
</tr>
<tr>
<td>CMR</td>
<td>Configure Motor Resolution</td>
</tr>
<tr>
<td>CMTR</td>
<td>Configure Motor Type</td>
</tr>
<tr>
<td>CMV</td>
<td>Configure Maximum Velocity</td>
</tr>
<tr>
<td>CPB</td>
<td>Configure Pushbuttons</td>
</tr>
<tr>
<td>CPD</td>
<td>Configure Position Derivative</td>
</tr>
<tr>
<td>CPDM</td>
<td>Configure Position Derivative Maximum</td>
</tr>
<tr>
<td>CPE</td>
<td>Configure Position Error</td>
</tr>
<tr>
<td>CPI</td>
<td>Configure Position Integral</td>
</tr>
<tr>
<td>CPIM</td>
<td>Configure Position Integral Maximum</td>
</tr>
<tr>
<td>CPP</td>
<td>Configure Position Proportional</td>
</tr>
<tr>
<td>CPPM</td>
<td>Configure Position Proportional Maximum</td>
</tr>
<tr>
<td>CRR</td>
<td>Configure Resolver Resolution</td>
</tr>
<tr>
<td>CTC</td>
<td>Configure Time Constant</td>
</tr>
<tr>
<td>CTG</td>
<td>Configure Tach Gain</td>
</tr>
<tr>
<td>CTGM</td>
<td>Configure Tach Gain Maximum</td>
</tr>
<tr>
<td>CVD</td>
<td>Configure Velocity Derivative</td>
</tr>
<tr>
<td>CVDM</td>
<td>Configure Velocity Derivative Maximum</td>
</tr>
<tr>
<td>CVE</td>
<td>Configure Velocity Error</td>
</tr>
<tr>
<td>CVF</td>
<td>Configure Velocity Feed-Forward</td>
</tr>
<tr>
<td>CVFM</td>
<td>Configure Velocity Feed-Forward Maximum</td>
</tr>
<tr>
<td>CVI</td>
<td>Configure Velocity Integral</td>
</tr>
<tr>
<td>CVIM</td>
<td>Configure Velocity Integral Maximum</td>
</tr>
<tr>
<td>CVP</td>
<td>Configure Velocity Proportional</td>
</tr>
<tr>
<td>CVPM</td>
<td>Configure Velocity Proportional Maximum</td>
</tr>
<tr>
<td>CZM</td>
<td>Configure Z Drive Mode</td>
</tr>
<tr>
<td>DCA</td>
<td>Display Current Average</td>
</tr>
<tr>
<td>DCI</td>
<td>Display Current Instantaneous</td>
</tr>
<tr>
<td>DCP</td>
<td>Display Current Peak</td>
</tr>
<tr>
<td>DDI</td>
<td>Display Drive Information</td>
</tr>
<tr>
<td>DISP'</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>DPA</td>
<td>Display Position Actual</td>
</tr>
<tr>
<td>DPE</td>
<td>Display Position Error</td>
</tr>
<tr>
<td>DPR</td>
<td>Display Position Resolver</td>
</tr>
<tr>
<td>DPS</td>
<td>Display Position Setpoint</td>
</tr>
<tr>
<td>DSP</td>
<td>Display Servo Picture</td>
</tr>
<tr>
<td>DVA</td>
<td>Display Velocity Actual</td>
</tr>
<tr>
<td>DVE</td>
<td>Display Velocity Error</td>
</tr>
<tr>
<td>DVS</td>
<td>Display Velocity Setpoint</td>
</tr>
<tr>
<td>E</td>
<td>Enable Communications Interface</td>
</tr>
<tr>
<td>F</td>
<td>Disable Communications Interface</td>
</tr>
<tr>
<td>FMCA</td>
<td>Find Motor Commutation Angle</td>
</tr>
<tr>
<td>^H</td>
<td>Backspace</td>
</tr>
<tr>
<td>HELP</td>
<td>Help</td>
</tr>
<tr>
<td>OFF</td>
<td>Amplifier Off</td>
</tr>
<tr>
<td>ON</td>
<td>Amplifier On</td>
</tr>
<tr>
<td>OUT</td>
<td>Real Time Output Control</td>
</tr>
<tr>
<td>RFS</td>
<td>Return to Factory Settings</td>
</tr>
<tr>
<td>RSE</td>
<td>Report Servo Errors</td>
</tr>
<tr>
<td>RV</td>
<td>Revision Level</td>
</tr>
<tr>
<td>SS</td>
<td>Set-Up Status Report</td>
</tr>
<tr>
<td>SSA</td>
<td>RS-232C Echo Control</td>
</tr>
<tr>
<td>SSI</td>
<td>Interactive Mode Control</td>
</tr>
<tr>
<td>SSM</td>
<td>Direction Input Polarity Control</td>
</tr>
<tr>
<td>SSR</td>
<td>Analog Output Control</td>
</tr>
<tr>
<td>SST</td>
<td>Enable Input Control</td>
</tr>
<tr>
<td>SSU</td>
<td>Set Warning Display Mode</td>
</tr>
<tr>
<td>SV</td>
<td>Save</td>
</tr>
<tr>
<td>Z</td>
<td>Reset</td>
</tr>
</tbody>
</table>
INDEX

A
- ACCURACY 106
- ALPHANUMERIC DISPLAY 47
- ANALOG LOOP 43
- ANG GRAPHICAL RELATIONSHIP 65

B
- BENCH TEST 6, 11, 12, 13
- Z600/Z800 6
- Z900 6

C
- COMMAND 76, 77
- COMMANDS
 - ANALOG OUTPUT CONTROL 82
 - ANALOG VOLTAGE DEADBAND 65
 - ANALOG VOLTAGE GAIN 65
 - ANALOG VOLTAGE RANGE 65
 - ANALOG VOLTAGE ZERO 66
 - ANALOG ZERO 13
 - BACKSPACE 78
 - CHARACTERISTICS 62
 - CONFIGURE CURRENT AVERAGE 66
 - CONFIGURE CURRENT PEAK 66
 - CONFIGURE DEADBAND 66
 - CONFIGURE IN-POSITION 67
 - CONFIGURE MAXIMUM VELOCITY 68
 - CONFIGURE MOTOR 67
 - CONFIGURE MOTOR RESOLUTION 67
 - CONFIGURE POSITION DERIVATIVE MAXIMUM 68
 - CONFIGURE POSITION ERROR 69
 - CONFIGURE POSITION INTEGRAL MAXIMUM 69
 - CONFIGURE POSITION PROPORTIONAL MAXIMUM 69
 - CONFIGURE POSITION ERROR 69
 - CONFIGURE RESOLVER RESOLUTION 70
 - CONFIGURE TACH GAIN 71
 - CONFIGURE TACH GAIN MAXIMUM 71
 - CONFIGURE VELOCITY ERROR 71
 - CONFIGURE VELOCITY FEED-FORWARD MAXIMUM 71
 - CONFIGURE VELOCITY FEED-FORWARD MAXIMUM 72
 - CONFIGURE VELOCITY INTEGRAL MAXIMUM 72
 - CONFIGURE VELOCITY FEED-FORWARD MAXIMUM 72
 - CONFIGURE VELOCITY INTEGRAL MAXIMUM 72
 - CONFIGURE VELOCITY FEED-FORWARD MAXIMUM 72
 - CONFIGURE VELOCITY INTEGRAL MAXIMUM 72
 - CHANNEL A 53
 - CHANNEL B 53
 - CHANNEL Z 53
 - PSEUDO-QUADRATURE OUTPUTS 53
 - ENVIRONMENTAL OPERATING TEMP. 15
 - STORAGE TEMP. 15
 - ENVIRONMENTAL CONSIDERATIONS 15
 - ERROR CODES, SEE FAULT CODES 77
- DISPLAY VELOCITY SETPOINT 77
- ENABLE COMMUNICATIONS INTERFACE 77
- ENABLE INPUT CONTROL 82
- FIND MOTOR COMMUTATION ANGLE 78
- FRONT PANEL DISPLAY 75
- HELP 78
- INTERACTIVE MODE CONTROL 81
- OFF 79
- ON 79
- REAL TIME OUTPUT CONTROL 79
- REPORT SERVO ERRORS 80
- RESET 83
- RETURN TO FACTORY SETTINGS 79
- RS-232C ECHO CONTROL 81
- SAVE TUNING PARAMETERS 83
- SET WARNING DISPLAY MODE 82
- SET-UP STATUS REPORT 81
- CONNECTIONS
 - INDEXER CONNECTOR PIN-OUT 31
 - RESOLVER PIN-OUT 31
 - RS-232C 36
 - Z600/800 MOTOR CABLE CONNECTION 8
 - Z600/800 POWER CABLE 9
 - Z600/800 RESOLVER CABLE 7
 - Z900 MOTOR CABLE CONNECTION 8
 - Z900 POWER CABLE 9
 - Z900 RESOLVER CABLE 7
 - ZX600/800 POWER 40
 - ZX900 POWER 40
- CONNECTORS
 - MOTOR 29
 - RESOLVER 29
 - COOLING
 - AIR FLOW AND PANEL LAYOUT GUIDELINES 17
 - COUPLERS 28
- CPU READY 114
- FAULT 114
- POWER 114

D
- DIGITAL CONTROL LOOP 43
- DIMENSIONS
 - Z600/800 DRIVE 16
 - Z900 DRIVE 16
- DISPLAY AND PUSHBUTTONS 47
- DISPLAY AND BUTTONS 47
- DRIVE FAULT CODES 115
- DRIVE MOUNTING 15
- DRIVE/MOTOR CONFIGURATION 5
- 120VAC VERSION 6
- 240VAC VERSION 6

E
- ENCODER
 - CHANNEL A 53
 - CHANNEL B 53
 - CHANNEL Z 53
 - PSEUDO-QUADRATURE OUTPUTS 53
 - ENVIRONMENTAL OPERATING TEMP. 15
 - STORAGE TEMP. 15
 - ENVIRONMENTAL CONSIDERATIONS 15
 - ERROR CODES, SEE FAULT CODES 77
- FAULT
 - MESSAGE 47
 - FAULT CODES 80, 115

F
- I/O [1] CONNECTOR
- I/O [2] CONNECTOR
 - ANALOG MONITOR OUTPUT 39
 - DRIVE FAULT RELAY OUTPUT 39
 - I/O [2] CONNECTOR ALSO HAS TWO OUTPOUTS 39
- INDEXER CONNECTOR
 - DIRECTION INPUT 33
 - DRIVE FAULT OUTPUT 34
 - FAULT RESET 34
 - IN-POSITION OUTPUT 35
 - REMOTE POWER SHUTDOWN 33
 - STEP INPUT 32
- INTERFACE OPTIONS 2
- LEDS 114
- MAIN MENU 47
- MAINTENANCE 113
- MODES OF OPERATION
 - POSITION MODE 2, 10
 - TORQUE MODE 2, 12
 - VELOCITY MODE 2, 13
- MOTOR BRACING 30
- WIRING 30
- MOTOR DIMENSIONS
 - Z605—Z610 18
 - Z620 & Z630 19
 - Z635 & Z640 20
 - Z800 MOTOR SHAFT DIMENSIONS 24
 - Z805 & 806 21
 - Z810 22
 - Z820, 830, & 840 23
 - Z910 25
 - Z920 & Z930 26
 - Z940 27
- MOTOR MAINTENANCE 113
- MOTOR SPECIFICATIONS
 - Z605 87
 - Z606 88
 - Z610 89
 - Z620 90
 - Z620 91
 - Z625 & Z640 92
 - Z640 93
 - Z806 98
 - Z810 99
 - Z820 100
 - Z830 101
 - Z840 102
 - Z910 103
 - Z920 104
 - Z930 105
 - Z940 106
- MOUNTING
 - MOTORS 17
 - PANEL LAYOUT 17
 - SCREWS 16

Appendix

119