C3 I20 T30 / T40 ArrayManager

June 08
EME - Electromechanical Automation Europe

Germany: Parker Hannifin GmbH & Co. KG
Electromechanical Automation
Postfach: 77607-1720
Robert-Bosch-Str. 22
D-77656 Offenburg
Tel.: +49 (0)781 509-0
Fax: +49 (0)781 509-98176
E-mail: sales.hauser@parker.com
Internet: www.parker-eme.com

England: Parker Hannifin plc
Electromechanical Automation
Arena Business Centre
Holy Rood Close
Poole, Dorset BH17 7BA UK
Tel.: +44 (0)1202 606300
Fax: +44 (0)1202 606301
E-mail: sales.digiplan@parker.com
Internet: www.parker-eme.com

Italy: Parker Hannifin S. p. A
Electromechanical Automation
Via Gounod 1
I-20092 Cinisello Balsamo (MI), Italy
Tel.: +39 (0)2660 12459
Fax: +39 (0)2660 12808
E-mail: sales.sbc@parker.com
Internet: www.parker-eme.com

EMN - Electromechanical Automation North America

USA: Parker Hannifin Corporation
Electromechanical Automation
5500 Business Park Drive
Rohnert Park, CA 94928
Phone #: (800) 358-9068
FAX #: (707) 584-3715
E-mail: emn_support@parker.com
Internet: www.compumotor.com

Copyright © 2008 Parker Hannifin GmbH & Co. KG EME
All Rights reserved.
Windows NT®, Windows 2000™, Windows XP™ are trademarks of Microsoft Corporation.
1 introduction 4

1.1 Product liability 4

1.1.1 Nonwarranty clause 4
1.1.2 Product monitoring liability 4
1.1.3 Right to make changes 4
1.1.4 Warranty Disclaimer 4
1.1.5 Product monitoring liability 4
1.1.6 Limitation of Liability 5
1.1.7 Copyright 5

1.2 Device assignment 5

1.2.1 This manual applies to the following devices: 5
1.2.2 With the supplement: 5
1.2.3 and the Master plc: 6

2 purpose of the Block 6

2.1 overview 6
2.2 restrictions and application 6

3 adjustment 6

3.1 Compax3 Configuration 6
3.2 Compax3 Hardware 7
3.3 Compax3 configuration 7
3.4 SIMATIC - HW Config 8
3.5 Application interface of “ArrayManager” 8
3.5.1 Schematic drawing for in- and output 8
3.5.2 Declaration of In- and Output 8
3.5.3 sequence of process data 9
3.6 setting for external Master 10

4 Application example 10

4.1 Overview of the connection: 10
4.2 cyclic channel (PZD) 11
4.3 Acyclic channel (PKW) 11
1 introduction

1.1 Product liability

1.1.1 Nonwarranty clause
Parker Hannifin - Automation Group - does not give any guarantee that the modules for SIMATIC S7 at hand will function properly under all conditions. From today's point of view there is generally no Software that will work properly under all conditions and requirements. The manufacturer therefore shall not be liable for direct and indirect damages of all kinds caused by the use of the software modules, even if the modules are used in accordance with the description in the manual at hand.

1.1.2 Product monitoring liability
Parker Hannifin - Automation Group - try, within the scope of the product monitoring liability, to identify and describe dangers arising from the use of our software modules. Due to the complexity and our limited insight into the plants of the end customers, where also products of other manufacturers are integrated, we can, however, not identify all possible dangers. Furthermore, not all properties of the software modules are described in this manual.

1.1.3 Right to make changes
Parker Hannifin - Automation Group - claims the right to update the manual and the software modules at any time without advance notice. Software modules may also be blocked without advance notice if dangers are detected, that endanger the proper functioning of the modules. We are not liable to eliminate errors immediately or provide new functions on customer's request.

1.1.4 Warranty Disclaimer
While efforts were made to verify the accuracy of the information contained in this documentation, Parker expressly disclaims all warranties with regard to this application note, including, but not limited to, the implied warranties of merchantability and fitness of a particular purpose. Parker does not warrant, guarantee, or make any representation regarding the use or the results of the use of this application note in terms of correctness, accuracy, or reliability. The contents of this application note are subject to change without notice. Parker will publish updates and revisions of this document as needed. The documents supersede all previous versions.

1.1.5 Product monitoring liability
Parker Hannifin - Automation Group - try, within the scope of the product monitoring liability, to identify and describe dangers arising from the use of our software modules. Due to the complexity and our limited insight into the plants of the end customers, where also products of other manufacturers are integrated, we can, however, not identify all possible dangers. Furthermore, not all properties of the software modules are described in this manual.
1.1.6 Limitation of Liability
You agree that Parker shall not be liable to you under this agreement for any damages, including without limitation any lost profits, or any consequential, incidental, or punitive damages arising out of the use or inability to use this application note and related documents, or for any claim by another party. You agree and hold Parker harmless for all claims and damages from any third party as a result of their use or inability to use any product that you develop based on this application note and the products and/or services documented herein.

1.1.7 Copyright
This manual and the accompanying software modules contain information which is a spiritual property of the author. The authorised user commits to use this information exclusively for the operation with C3 positioning controller and their integration. The duplication and disclosure of the documentation or from extracts needs to be permitted separately. Duplication of the software modules is permitted for the purposes of a data protection.

1.2 Device assignment

1.2.1 This manual applies to the following devices:
- Compax3S025V2 + supplement
- Compax3S063V2 + supplement
- Compax3S100V2 + supplement
- Compax3S025V2 + supplement
- Compax3S063V2 + supplement
- Compax3S100V2 + supplement
- Compax3S150V2 + supplement
- Compax3S015V4 + supplement
- Compax3S038V4 + supplement
- Compax3S075V4 + supplement
- Compax3S150V4 + supplement
- Compax3S300V4 + supplement
- Compax3H050V4 + supplement
- Compax3H090V4 + supplement
- Compax3H125V4 + supplement
- Compax3H155V4 + supplement

1.2.2 With the supplement:
- F10 (Resolver)
- F11 (SinCos©)
- F12 (linear and rotary direct drives)
- I20
- T30
- T40
1.2.3 and the Master plc:
- SIMATIC S7-300 or
- SIMATIC S7-400
- with integrated PROFIBUS DP Master (e.g. CPU315-2DP)

2 purpose of the Block

2.1 overview

<table>
<thead>
<tr>
<th>Absolute</th>
<th>Symbol</th>
<th>Comment</th>
<th>Vers.</th>
<th>Datum</th>
<th>device</th>
<th>application</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB40</td>
<td>C3ArrayManager</td>
<td>C3 I20 T30 / T40 Manager for reading and writing objects</td>
<td>V0.1</td>
<td>2004-04-29 07:44:14 PM</td>
<td>C3 I20 T30 / T40</td>
<td>Recipe - Array read / write</td>
</tr>
</tbody>
</table>

2.2 restrictions and application

The block is used to transfer tags, which are not very often changed. There’s a possibility to transfer in both directions. The more often changed tags should be transferred with cyclic channel (PZD).

Now you’ve the possibility to transfer lots of more tags with ArrayManager over the acyclic channel. The block is writing or reading any number of tags from 1 to 288. The actualisation time is increasing with the number of tags.

3 adjustment

3.1 Compax3 Configuration

With C3ServoManager few following adjustments:

At folder:
- \ communication \ PROFIBUS DP - node settings
 [PLC -> Compax3]
- The input parameters are up to the user.
 [Compax3 -> PLC]
- The output tags are up to the user.

Caution: don’t use the same tag in both ways in same direction, otherwise it could force the to be flashing with tow values.

[Operation Mode Settings]
- Acyclic process data channel / Parameter channel
 Select with "PKW"
 Error response on fieldbus failure is up to user.

At folder:
- \ communication \ scaling factors Y2/Y4
 The variables of the first two columns (col1, col2) are as C3 "REAL" -Variables declared. Via Fieldbus they are transferred throw "INT"-(col1) resp. "DINT"-(col2)
 Variables. The ArrayManager is transferring them into SIMATIC "real" variables.
 The adjustment of the decimal point is done with:
Y2 - Array_col2
Y4 - Array_col1

The adjustment of scaling factors is up to user according to the Application, for a meaningful adjustment you've the following array of values:

- For col2
 Values: -32768 ... 32767
 Default setting: "1 decimal place"
 Suggestion values: 0... 4 decimal places

- For col1
 Values: -2147483648 ... 2147483647
 Default setting: "3 Decimal places"
 Suggestion values: 0... 6 decimal places,

So, if you need a high amount of values use column 1. This two mentioned scaling factors are correlated the to first two columns (col1, col2). They're used in same way equal you transfer via PZD or PKW. The other settings are not used with ArrayManager.

3.2 Compax3 Hardware

DIP-Switch: Bus address
Bus plug: ``ON / OFF`` Bus- termination resistance

3.3 Compax3 configuration

![Image of Compax3 configuration](pic 1 communication - PROFIBUS DP node settings)
3.4 SIMATIC - HW Config

Correlated to PPO-Type (see pic 2 communication - PROFIBUS DP node settings - is shown in C3-Manager wizard) use the type at SIMATIC - HW Config.

![SIMATIC - HW Config](image)

Edit the Start address of PKW (here 256) in Instance Variable <nLaddr> (DB40.DBW12).

3.5 Application interface of “ArrayManager”

3.5.1 Schematic drawing for in- and output

DB40

DBX0.0	bExecute	bCommErr	DBX10.0
DBX0.1	bDirection	bTransErr	DBX10.1
DBX0.2	bRealAsDint	bRangeErr	DBX10.2
DBW2	iDBNum	bDone	DBX10.3
DBW4	iDBOff	bAborted	DBX10.4
DBW6	iNumberOfVars	bBusy	DBX10.5
DBX8.0	bExDataTransfer		
DBW12	nLaddr		
DBX14.0 Word 4	stC3PKWI nDint.nPKE	stC3PKWOutDint.nPKE	DBX22.0 Word 4

3.5.2 Declaration of In- and Output

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Declaration</th>
<th>Type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klaus Zimmer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parker Hannifn GmbH & Co KG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EME - Electromechanical Automation Europe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postfach 17 20 * 77607 Offenburg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert-Bosch-Straße 22 * 77656 Offenburg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Mail: klaus_zimmer@parker.com</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Declaration and Type Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Declaration</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bExecute</td>
<td>IN</td>
<td>BOOL</td>
<td>Start transfer with rising edge, that must be “high” during complete transfer (reset with bDone = 1)</td>
</tr>
<tr>
<td>bDirection</td>
<td>IN</td>
<td>BOOL</td>
<td>=0 Upload, =1 Download</td>
</tr>
<tr>
<td>bRealAsDint</td>
<td>IN</td>
<td>BOOL</td>
<td>=0 col. 1 and 2 are transferred to / from REAL at S7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=1 col. 1 and 2 are transferred to / from DINT or INT (e.g. for special dates out of a HMI-device)</td>
</tr>
<tr>
<td>iDBNum</td>
<td>IN</td>
<td>INT</td>
<td>DB Number with Variables</td>
</tr>
<tr>
<td>iDBOff</td>
<td>IN</td>
<td>INT</td>
<td>Start address in iDBNum</td>
</tr>
<tr>
<td>iNumberOfVars</td>
<td>IN</td>
<td>INT</td>
<td>number of Variables for transfer</td>
</tr>
<tr>
<td>bExDataTransfer</td>
<td>IN</td>
<td>BOOL</td>
<td>=0 integrated DP interface (communication with SFC14 / SFC15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=1 external DP- interface (communication with FC1 / FC2)</td>
</tr>
<tr>
<td>bCommErr</td>
<td>OUT</td>
<td>BOOL</td>
<td>=1 communication failure (out of SFC14 / SFC15)</td>
</tr>
<tr>
<td>bTransErr</td>
<td>OUT</td>
<td>BOOL</td>
<td>=1 Format-, Commando failure with transfer to C3</td>
</tr>
<tr>
<td>bRangeErr</td>
<td>OUT</td>
<td>BOOL</td>
<td>=1 at</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- amount of Variables < 1 or > 288</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- number of rows < 1 or > 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- number of columns < 1 or > 9</td>
</tr>
<tr>
<td>bDone</td>
<td>OUT</td>
<td>BOOL</td>
<td>=1 if transfer finished and bExecute = 1</td>
</tr>
<tr>
<td>bAborted</td>
<td>OUT</td>
<td>BOOL</td>
<td>=1 if transfer not finished but bExecute = 0</td>
</tr>
<tr>
<td>bBusy</td>
<td>OUT</td>
<td>BOOL</td>
<td>=1 if transfer active</td>
</tr>
<tr>
<td>nLaddr</td>
<td>STATIC</td>
<td>WORD</td>
<td>Default = W#16#100, Start address C3-Slave at HW Config, necessary if bExDataTransfer = 0</td>
</tr>
<tr>
<td>StC3PKWInDint.nPKE</td>
<td>STATIC</td>
<td>Word 4</td>
<td>Local input area for external CP.</td>
</tr>
<tr>
<td>StC3PKWOOutDint.nPKE</td>
<td>STATIC</td>
<td>Word 4</td>
<td>Local output area for external CP.</td>
</tr>
</tbody>
</table>

3.5.3 sequence of process data

1. setting of inputs of the block
 - `<nLaddr>` (Parameter from HW Config)
 - `<bDirection>` (write o read)
 - `<iDBNum>` and `<iDBOff>` (pointer of Start address of Data block)
 - `<iNumberOfVars>` (number of variables for transferring)

2. settings of Parameters of the Data block
 - To transfer one variable a data set is needed. This data set contains three tags: two pointers (Row, Column) and the value. For Row / Column each on byte is needed for value 4 byte is reserved.
 - It is up to the user how much Variables (1 ... 288) and in which order they are transferred.
 - Each column of the C3 array is correlated one data type which is not possible to be changed.
 - 1. column REAL transferred as INT
 - 2. column REAL transferred as DINT
 - 3. - 5. column INT
 - 6. - 9. column DINT
 - that means: with the pointers is also the format fixed.
 - Each data set contains a value area with 4 bytes despite that is not used in any case (e.g. INT).
 - For engineering data blocks it is advisable to use the following data blocks
3. If transfer direction is from plc to C3 fill the data values in data block
4. Force the input
 - `<b_execute>`
 to "1": transfer is active!
5. If the output
 - `<b_done>`
 has reached the value "1" transfer is done. The input
 - `<b_execute>`
 should be reseted to "0".
6. If there are values transferred form c3 to plc: now it is possible to read them out of data block

3.6 setting for external Master

- the function block is only possible with S7 plc with integrated PROFINET DP master: Without the block is not suitable.
- If this interface is used for another purpose and the connection to c3 should be realised with an external communication processor (cp342-5) the function block is possible to be used with following settings:
 - For running the CP 342-5 there're to functions: FC1 / FC2 (DP_SEND / DP_RECV, out of SIMATIC Standard library).
 - Put at DP_SEND the global output area, and at DP_RECV the global input area.
 - attention! These global areas included the data's of all bus slaves.
 - The local field of c3 must be transferred to the field at DB40 (e.g. via SFC20 BLKMOV).
 - The local input and output field could be indentif ied with SIMATIC - HW Config.

4 Application example

4.1 Overview of the connection:

Connection between one plc SIMATIC S7 300 as PROFIBUS DP Master and one drive C3 I20 T30 as PROFIBUS DP Slave.
4.2 cyclic channel (PZD)

The In- and output parameters are at the C3 CoDeSys Program available. They are transferred in the S7 to the in- and output data EB50... EB55 respectively AB50 ... AB55 with the functions FC51 / FC99.

<table>
<thead>
<tr>
<th>S7</th>
<th>= ></th>
<th>C3</th>
<th>= ></th>
<th>S7</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB50</td>
<td>0</td>
<td>Controlword_1</td>
<td>0</td>
<td>EB50</td>
</tr>
<tr>
<td>AB51</td>
<td>1</td>
<td>Statusword_1</td>
<td>1</td>
<td>EB51</td>
</tr>
<tr>
<td>AB52</td>
<td>2</td>
<td></td>
<td>2</td>
<td>EB52</td>
</tr>
<tr>
<td>AB53</td>
<td>3</td>
<td>Col01_Row01</td>
<td>3</td>
<td>EB53</td>
</tr>
<tr>
<td>AB54</td>
<td>4</td>
<td></td>
<td>4</td>
<td>EB54</td>
</tr>
<tr>
<td>AB55</td>
<td>5</td>
<td></td>
<td>5</td>
<td>EB55</td>
</tr>
</tbody>
</table>

4.3 Acyclic channel (PKW)

Via the 8 Byte PKW interface are 2 variables of the recipe array transferred to the C3. With an endless sequence is the transfer continuously repeated. This is done from the functions FC31, FC40, FB40, FC41, FC42, FC43, FC44.

<table>
<thead>
<tr>
<th>S7</th>
<th>Format</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW50</td>
<td>Word</td>
<td>C3Plus.DeviceControl_Controlword_1</td>
</tr>
<tr>
<td>EW50</td>
<td>Word</td>
<td>C3Plus.DeviceState_Statusword_1</td>
</tr>
<tr>
<td>ED52</td>
<td>DINT</td>
<td>C3Array.Col01_Row01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S7</th>
<th>Format</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB104.DBD2</td>
<td>REAL</td>
<td>C3Array.Col01_Row01</td>
</tr>
<tr>
<td>DB104.DBD8</td>
<td>REAL</td>
<td>C3Array.Col01_Row02</td>
</tr>
</tbody>
</table>